• Components of the engine
  • Basic Engine Parts - How Car Engines Work | HowStuffWorks
  • Engine Components - Engine Parts
  • ENGINE COMPONENTS Cylinder Heads.

Gasoline Engine Management: Systems and Components (Bosch Professional Automotive Information)


The oil passages are cleverly drilled into the connecting parts of theengine, which allows the highly mobile ones (like the pistons) to haveample lubrication. Originating at the oil pump, they flow through all ofthe major components of the engine. In the case of the pistons and rods,the passages are designed to open each time the holes in the crankshaftand rods align.

When a piston in an engine reaches the top of its travel, that point is known as Top Dead Centre or TDC. This is important to know because I don't think any engine actually fires the spark plug with the pistons at TDC. More often than not, they fire slightly before TDC. So how does your ignition system work, and what is ignition timing all about?
Well generating the spark is the easy part. The electrical system in your car supplies voltage to your coil and ignition unit. The engine will have a trigger for each cylinder, be it a mechanical trigger (points), electronic module or crank trigger. Whatever it is, at that point, the engine effectively sends a signal to the coil to discharge into the high voltage system. That charge travels into the distributor cap and is routed to the relevant spark plug where it is turned into a spark. The key to this, though, is the timing of the spark in relation to the position of the piston in the cylinder. Hence ignition timing. Having the spark ignite the fuel-air mixture too soon is basically the same as detonation and is bad for all the mechanical components of your engine. Having the spark come along too late will cause it to try to ignite the fuel-air mixture after the piston has already started to recede down the cylinder, which is inefficient and loses power.
Timing the spark nowadays is usually done with the engine management system. It measures airflow, ambient temperature, takes input from knock sensors and literally dozens of sensors all over the engine. It then has an ignition timing map built into its memory and it cross references the input from all the sensors to determine the precise time that it should fire the spark plug, based on the ignition timing map. At 3000rpm, in a 4 cylinder engine, it does this about 100 times a second. In older systems, the spark timing was done using simple mechanical systems which had nowhere near the ability to compensate for the all the variables involved in a running combustion engine.
Typically as an engine revs quicker, the ignition timing needs to advance because the spark needs to get to the cylinder more quickly. Why? Well the fuel-air mix takes a finite amount of time to combust. It won't burn any quicker or slower for any given engine speed. So for higher speeds, the mixture needs to be ignited earlier in the cycle to ensure that it begins to burn at the optimum timing point. In modern systems, this is all taken account of in the ignition timing map. On older mechanical system, they used mechanical or vacuum advance systems, so that the difference in the amount of vacuum generated in the intake manifold, determined the advance/retard amount of the timing.


Outboard Engines & Components | eBay